Chemical characterization of boron radical anions by studying gas-phase ionmolecule reactions in a mass spectrometer

<u>Jaskiran Kaur</u>^a, Judy Kuan-Yu Liu^a, Markus Rohdenburg^b, Jonas Warneke^{b*}, Hilkka Kenttämaa^{a*}

^aPurdue University, Department of Chemistry, West Lafayette, IN 47907 ^bUniversity of Leipzig, Department of Chemistry, Leipzig, Germany, 04109

Abstract:

Many highly reactive and short-lived ions cannot be studied in the solution phase. The chemistry of these reactive ions can be explored by studying gas-phase ion-molecule reactions in a mass spectrometer. Electronically and structurally stable *closo*-dodecacarborate anions [B₁₂X₁₂]²⁻ (X=halogen, CN) undergo cleavage of stable B-X bond on collision-activated dissociation in mass spectrometer yielding fragment ions of exceptional reactivity. This work aims at exploring the special binding properties of these electrophilic anions. The gas-phase reactivity of doubly charged *closo*-dodecaborate anion, [B₁₂I₁₁]^{2-*} towards allyl iodide and di-*tert*-butyl nitroxide was explored and compared to that of the singly charged anion, [HCB₁₁I₁₀]^{-*}. Despite similar structural conditions of the radical binding site, the kinetics of these ion-molecule reactions differed due to different physical charge states of the reacting boron radical anions. Furthermore, to understand the influence of the localized radical binding site, the gas-phase reactivity of two singly charged derivatives, [HCB₁₁I₁₀]^{-*} and [CB₁₁I₁₁]^{-*}, towards oxygen and allyl iodide was studied and compared. The electrophilic nature of the boron binding site in [HCB₁₁I₁₀]^{-*} was found to be greater than that of the carbon binding site in [CB₁₁I₁₁]^{-*}.